Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Secret Lives of Names? Name Embeddings from Social Media (1905.04799v1)

Published 12 May 2019 in cs.SI and cs.CL

Abstract: Your name tells a lot about you: your gender, ethnicity and so on. It has been shown that name embeddings are more effective in representing names than traditional substring features. However, our previous name embedding model is trained on private email data and are not publicly accessible. In this paper, we explore learning name embeddings from public Twitter data. We argue that Twitter embeddings have two key advantages: \textit{(i)} they can and will be publicly released to support research community. \textit{(ii)} even with a smaller training corpus, Twitter embeddings achieve similar performances on multiple tasks comparing to email embeddings. As a test case to show the power of name embeddings, we investigate the modeling of lifespans. We find it interesting that adding name embeddings can further improve the performances of models using demographic features, which are traditionally used for lifespan modeling. Through residual analysis, we observe that fine-grained groups (potentially reflecting socioeconomic status) are the latent contributing factors encoded in name embeddings. These were previously hidden to demographic models, and may help to enhance the predictive power of a wide class of research studies.

Citations (24)

Summary

We haven't generated a summary for this paper yet.