Papers
Topics
Authors
Recent
Search
2000 character limit reached

ECG Identification under Exercise and Rest Situations via Various Learning Methods

Published 11 May 2019 in eess.SP, cs.LG, and stat.ML | (1905.04442v1)

Abstract: As the advancement of information security, human recognition as its core technology, has absorbed an increasing amount of attention in the past few years. A myriad of biometric features including fingerprint, face, iris, have been applied to security systems, which are occasionally considered vulnerable to forgery and spoofing attacks. Due to the difficulty of being fabricated, electrocardiogram (ECG) has attracted much attention. Though many works have shown the excellent human identification provided by ECG, most current ECG human identification (ECGID) researches only focus on rest situation. In this manuscript, we overcome the oversimplification of previous researches and evaluate the performance under both exercise and rest situations, especially the influence of exercise on ECGID. By applying various existing learning methods to our ECG dataset, we find that current methods which can well support the identification of individuals under rests, do not suffice to present satisfying ECGID performance under exercise situations, therefore exposing the deficiency of existing ECG identification methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.