Papers
Topics
Authors
Recent
2000 character limit reached

Weakly Labeling the Antarctic: The Penguin Colony Case

Published 8 May 2019 in cs.CV | (1905.03313v2)

Abstract: Antarctic penguins are important ecological indicators -- especially in the face of climate change. In this work, we present a deep learning based model for semantic segmentation of Ad\'elie penguin colonies in high-resolution satellite imagery. To train our segmentation models, we take advantage of the Penguin Colony Dataset: a unique dataset with 2044 georeferenced cropped images from 193 Ad\'elie penguin colonies in Antarctica. In the face of a scarcity of pixel-level annotation masks, we propose a weakly-supervised framework to effectively learn a segmentation model from weak labels. We use a classification network to filter out data unsuitable for the segmentation network. This segmentation network is trained with a specific loss function, based on the average activation, to effectively learn from the data with the weakly-annotated labels. Our experiments show that adding weakly-annotated training examples significantly improves segmentation performance, increasing the mean Intersection-over-Union from 42.3 to 60.0% on the Penguin Colony Dataset.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.