Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional Neural Networks Considering Local and Global features for Image Enhancement (1905.02899v1)

Published 7 May 2019 in eess.IV, cs.CV, and cs.MM

Abstract: In this paper, we propose a novel convolutional neural network (CNN) architecture considering both local and global features for image enhancement. Most conventional image enhancement methods, including Retinex-based methods, cannot restore lost pixel values caused by clipping and quantizing. CNN-based methods have recently been proposed to solve the problem, but they still have a limited performance due to network architectures not handling global features. To handle both local and global features, the proposed architecture consists of three networks: a local encoder, a global encoder, and a decoder. In addition, high dynamic range (HDR) images are used for generating training data for our networks. The use of HDR images makes it possible to train CNNs with better-quality images than images directly captured with cameras. Experimental results show that the proposed method can produce higher-quality images than conventional image enhancement methods including CNN-based methods, in terms of various objective quality metrics: TMQI, entropy, NIQE, and BRISQUE.

Citations (19)

Summary

We haven't generated a summary for this paper yet.