Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Mathematical Models of Gene Expression (1905.02578v3)

Published 6 May 2019 in q-bio.MN, math.PR, and q-bio.QM

Abstract: In this paper we analyze the equilibrium properties of a large class of stochastic processes describing the fundamental biological process within bacterial cells, {\em the production process of proteins}. Stochastic models classically used in this context to describe the time evolution of the numbers of mRNAs and proteins are presented and discussed. An extension of these models, which includes elongation phases of mRNAs and proteins, is introduced. A convergence result to equilibrium for the process associated to the number of proteins and mRNAs is proved and a representation of this equilibrium as a functional of a Poisson process in an extended state space is obtained. Explicit expressions for the first two moments of the number of mRNAs and proteins at equilibrium are derived, generalizing some classical formulas. Approximations used in the biological literature for the equilibrium distribution of the number of proteins are discussed and investigated in the light of these results. Several convergence results for the distribution of the number of proteins at equilibrium are in particular obtained under different scaling assumptions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube