Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Learning to Predict Student Outcomes

Published 27 Apr 2019 in cs.LG, cs.CY, and stat.ML | (1905.02530v1)

Abstract: The increasingly fast development cycle for online course contents, along with the diverse student demographics in each online classroom, make real-time student outcomes prediction an interesting topic for both industrial research and practical needs. In this paper, we tackle the problem of real-time student performance prediction in an on-going course using a domain adaptation framework. This framework is a system trained on labeled student outcome data from previous coursework but is meant to be deployed on another course. In particular, we introduce a GritNet architecture, and develop an unsupervised domain adaptation method to transfer a GritNet trained on a past course to a new course without any student outcome label. Our results for real Udacity student graduation predictions show that the GritNet not only generalizes well from one course to another across different Nanodegree programs, but also enhances real-time predictions explicitly in the first few weeks when accurate predictions are most challenging.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.