Papers
Topics
Authors
Recent
Search
2000 character limit reached

Source Generator Attribution via Inversion

Published 6 May 2019 in cs.CV, cs.LG, and eess.IV | (1905.02259v2)

Abstract: With advances in Generative Adversarial Networks (GANs) leading to dramatically-improved synthetic images and video, there is an increased need for algorithms which extend traditional forensics to this new category of imagery. While GANs have been shown to be helpful in a number of computer vision applications, there are other problematic uses such as `deep fakes' which necessitate such forensics. Source camera attribution algorithms using various cues have addressed this need for imagery captured by a camera, but there are fewer options for synthetic imagery. We address the problem of attributing a synthetic image to a specific generator in a white box setting, by inverting the process of generation. This enables us to simultaneously determine whether the generator produced the image and recover an input which produces a close match to the synthetic image.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.