Papers
Topics
Authors
Recent
2000 character limit reached

Multivariate Time Series Classification using Dilated Convolutional Neural Network

Published 5 May 2019 in cs.LG and stat.ML | (1905.01697v1)

Abstract: Multivariate time series classification is a high value and well-known problem in machine learning community. Feature extraction is a main step in classification tasks. Traditional approaches employ hand-crafted features for classification while convolutional neural networks (CNN) are able to extract features automatically. In this paper, we use dilated convolutional neural network for multivariate time series classification. To deploy dilated CNN, a multivariate time series is transformed into an image-like style and stacks of dilated and strided convolutions are applied to extract in and between features of variates in time series simultaneously. We evaluate our model on two human activity recognition time series, finding that the automatic features extracted for the time series can be as effective as hand-crafted features.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.