Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Matrix Group Integrals, Surfaces, and Mapping Class Groups II: $\mathrm{O}\left(n\right)$ and $\mathrm{Sp}\left(n\right)$ (1904.13106v3)

Published 30 Apr 2019 in math.GT, math-ph, math.GR, math.MP, and math.PR

Abstract: Let $w$ be a word in the free group on $r$ generators. The expected value of the trace of the word in $r$ independent Haar elements of $\mathrm{O}(n)$ gives a function ${\cal T}r_{w}{\mathrm{O}}(n)$ of $n$. We show that ${\cal T}r_{w}{\mathrm{O}}(n)$ has a convergent Laurent expansion at $n=\infty$ involving maps on surfaces and $L{2}$-Euler characteristics of mapping class groups associated to these maps. This can be compared to known, by now classical, results for the GUE and GOE ensembles, and is similar to previous results concerning $\mathrm{U}\left(n\right)$, yet with some surprising twists. A priori to our result, ${\cal T}r_{w}{\mathrm{O}}(n)$ does not change if $w$ is replaced with $\alpha(w)$ where $\alpha$ is an automorphism of the free group. One main feature of the Laurent expansion we obtain is that its coefficients respect this symmetry under $\mathrm{Aut}(\mathrm{\mathbf{F}}{r})$. As corollaries of our main theorem, we obtain a quantitative estimate on the rate of decay of ${\cal T}r{w}{\mathrm{O}}(n)$ as $n\to\infty$, we generalize a formula of Frobenius and Schur, and we obtain a universality result on random orthogonal matrices sampled according to words in free groups, generalizing a theorem of Diaconis and Shahshahani. Our results are obtained more generally for a tuple of words $w_1,\ldots,w_\ell$, leading to functions ${\cal T}r_{w_{1},\ldots,w_{\ell}}{\mathrm{O}}$. We also obtain all the analogous results for the compact symplectic groups $\mathrm{Sp}\left(n\right)$ through a rather mysterious duality formula.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.