Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A discrete least squares collocation method for two-dimensional nonlinear time-dependent partial differential equations (1904.11647v1)

Published 26 Apr 2019 in math.NA

Abstract: In this paper, we develop regularized discrete least squares collocation and finite volume methods for solving two-dimensional nonlinear time-dependent partial differential equations on irregular domains. The solution is approximated using tensor product cubic spline basis functions defined on a background rectangular (interpolation) mesh, which leads to high spatial accuracy and straightforward implementation, and establishes a solid base for extending the computational framework to three-dimensional problems. A semi-implicit time-stepping method is employed to transform the nonlinear partial differential equation into a linear boundary value problem. A key finding of our study is that the newly proposed mesh-free finite volume method based on circular control volumes reduces to the collocation method as the radius limits to zero. Both methods produce a large constrained least-squares problem that must be solved at each time step in the advancement of the solution. We have found that regularization yields a relatively well-conditioned system that can be solved accurately using QR factorization. An extensive numerical investigation is performed to illustrate the effectiveness of the present methods, including the application of the new method to a coupled system of time-fractional partial differential equations having different fractional indices in different (irregularly shaped) regions of the solution domain.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube