Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Decade of Mal-Activity Reporting: A Retrospective Analysis of Internet Malicious Activity Blacklists (1904.10629v1)

Published 24 Apr 2019 in cs.CR

Abstract: This paper focuses on reporting of Internet malicious activity (or mal-activity in short) by public blacklists with the objective of providing a systematic characterization of what has been reported over the years, and more importantly, the evolution of reported activities. Using an initial seed of 22 blacklists, covering the period from January 2007 to June 2017, we collect more than 51 million mal-activity reports involving 662K unique IP addresses worldwide. Leveraging the Wayback Machine, antivirus (AV) tool reports and several additional public datasets (e.g., BGP Route Views and Internet registries) we enrich the data with historical meta-information including geo-locations (countries), autonomous system (AS) numbers and types of mal-activity. Furthermore, we use the initially labelled dataset of approx 1.57 million mal-activities (obtained from public blacklists) to train a machine learning classifier to classify the remaining unlabeled dataset of approx 44 million mal-activities obtained through additional sources. We make our unique collected dataset (and scripts used) publicly available for further research. The main contributions of the paper are a novel means of report collection, with a machine learning approach to classify reported activities, characterization of the dataset and, most importantly, temporal analysis of mal-activity reporting behavior. Inspired by P2P behavior modeling, our analysis shows that some classes of mal-activities (e.g., phishing) and a small number of mal-activity sources are persistent, suggesting that either blacklist-based prevention systems are ineffective or have unreasonably long update periods. Our analysis also indicates that resources can be better utilized by focusing on heavy mal-activity contributors, which constitute the bulk of mal-activities.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.