Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Analytic solutions for locally optimal designs for gamma models having linear predictor without intercept (1904.09232v1)

Published 6 Apr 2019 in math.ST, stat.ME, and stat.TH

Abstract: The gamma model is a generalized linear model for gamma-distributed outcomes. The model is widely applied in psychology, ecology or medicine. In this paper we focus on gamma models having a linear predictor without intercept. For a specific scenario sets of locally D- and A-optimal designs are to be developed. Recently, Gaffke et al. (2018) established a complete class and an essentially complete class of designs for gamma models to obtain locally D-optimal designs. However to extend this approach to gamma model without an intercept term is complicated. To solve that further techniques have to be developed in the current work. Further, by a suitable transformation between gamma models with and without intercept optimality results may be transferred from one model to the other. Additionally by means of The General Equivalence Theorem optimality can be characterized for multiple regression by a system of polynomial inequalities which can be solved analytically or by computer algebra. By this necessary and sufficient conditions on the parameter values can be obtained for the local D-optimality of particular designs. The robustness of the derived designs with respect to misspecifications of the initial parameter values is examined by means of their local D-efficiencies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube