Spin-mapping approach for nonadiabatic molecular dynamics (1904.08293v1)
Abstract: We propose a trajectory-based method for simulating nonadiabatic dynamics in molecular systems with two coupled electronic states. Employing a quantum-mechanically exact mapping of the two-level problem to a spin-1/2 coherent state, we construct a classical phase space of a spin vector constrained to a spherical surface with a radius consistent with the quantum magnitude of the spin. In contrast with the singly-excited harmonic oscillator basis used in Meyer-Miller-Stock-Thoss (MMST) mapping, the theory requires no additional projection operators onto the space of physical states. When treated under a quasiclassical approximation, we show that the resulting dynamics is equivalent to that generated by the MMST Hamiltonian. What differs is the value of the zero-point energy parameter as well as the initial distribution and the measurement operators. For various spin-boson models the results of our method are seen to be a significant improvement compared to both standard Ehrenfest dynamics and linearized semiclassical MMST mapping, without adding any computational complexity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.