On the size of $(K_t,\mathcal{T}_k)$-co-critical graphs (1904.07825v2)
Abstract: Given an integer $r\ge1$ and graphs $G, H_1, \ldots, H_r$, we write $G \rightarrow ({H}_1, \ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $i\in{1, \ldots, r}$. A non-complete graph $G$ is $(H_1, \ldots, H_r)$-co-critical if $G \nrightarrow ({H}_1, \ldots, {H}_r)$, but $G+e\rightarrow ({H}_1, \ldots, {H}_r)$ for every edge $e$ in $\overline{G}$. In this paper, motivated by Hanson and Toft's conjecture [Edge-colored saturated graphs, J Graph Theory 11(1987), 191--196], we study the minimum number of edges over all $(K_t, \mathcal{T}_k)$-co-critical graphs on $n$ vertices, where $\mathcal{T}_k$ denotes the family of all trees on $k$ vertices. Following Day [Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017), 201--207], we apply graph bootstrap percolation on a not necessarily $K_t$-saturated graph to prove that for all $t\ge4 $ and $k\ge \max{6, t}$, there exists a constant $c(t, k)$ such that, for all $n \ge (t-1)(k-1)+1$, if $G$ is a $(K_t, \mathcal{T}_k)$-co-critical graph on $n$ vertices, then $$ e(G)\ge \left(\frac{4t-9}{2}+\frac{1}{2}\left\lceil \frac{k}{2} \right\rceil\right)n-c(t, k).$$ Furthermore, this linear bound is asymptotically best possible when $t\in{4,5}$ and $k\ge6$. The method we develop in this paper may shed some light on attacking Hanson and Toft's conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.