Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The large $N$ limit of OPEs in symmetric orbifold CFTs with $\mathcal{N}=(4,4)$ supersymmetry (1904.07816v2)

Published 16 Apr 2019 in hep-th

Abstract: We explore the OPE of certain twist operators in symmetric product ($S_N$) orbifold CFTs, extending our previous work arXiv:1804.01562 to the case of $\mathcal{N}=(4,4)$ supersymmetry. We consider a class of twist operators related to the chiral primaries by spectral flow parallel to the twist. We conjecture that at large $N$, the OPE of two such operators contains only fields in this class, along with excitations by fractional modes of the superconformal currents. We provide evidence for this by studying the coincidence limits of two 4-point functions to several non-trivial orders. We show how the fractional excitations of the twist operators in our restricted class fully reproduce the crossing channels appearing in the coincidence limits of the 4-point functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube