Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complex Trainable ISTA for Linear and Nonlinear Inverse Problems (1904.07409v2)

Published 16 Apr 2019 in cs.IT, cs.LG, and math.IT

Abstract: Complex-field signal recovery problems from noisy linear/nonlinear measurements appear in many areas of signal processing and wireless communications. In this paper, we propose a trainable iterative signal recovery algorithm named complex-field TISTA (C-TISTA) which treats complex-field nonlinear inverse problems. C-TISTA is based on the concept of deep unfolding and consists of a gradient descent step with the Wirtinger derivatives followed by a shrinkage step with a trainable complex-valued shrinkage function. Importantly, it contains a small number of trainable parameters so that its training process can be executed efficiently. Numerical results indicate that C-TISTA shows remarkable signal recovery performance compared with existing algorithms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.