Papers
Topics
Authors
Recent
2000 character limit reached

Uniform bound for the number of rational points on a pencil of curves

Published 15 Apr 2019 in math.NT and math.AG | (1904.07268v2)

Abstract: Consider a one-parameter family of smooth, irreducible, projective curves of genus $g\ge 2$ defined over a number field. Each fiber contains at most finitely many rational points by the Mordell Conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of the family and the Mordell--Weil rank of the fiber's Jacobian. Our proof uses Vojta's approach to the Mordell Conjecture furnished with a height inequality due to the second- and third-named authors. In addition we obtain uniform bounds for the number of torsion in the Jacobian that lie each fiber of the family.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.