Deep learning as optimal control problems: models and numerical methods (1904.05657v3)
Abstract: We consider recent work of Haber and Ruthotto 2017 and Chang et al. 2018, where deep learning neural networks have been interpreted as discretisations of an optimal control problem subject to an ordinary differential equation constraint. We review the first order conditions for optimality, and the conditions ensuring optimality after discretisation. This leads to a class of algorithms for solving the discrete optimal control problem which guarantee that the corresponding discrete necessary conditions for optimality are fulfilled. The differential equation setting lends itself to learning additional parameters such as the time discretisation. We explore this extension alongside natural constraints (e.g. time steps lie in a simplex). We compare these deep learning algorithms numerically in terms of induced flow and generalisation ability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.