Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scaling Limit of Sub-ballistic 1D Random Walk among Biased Conductances: a Story of Wells and Walls (1904.05283v2)

Published 10 Apr 2019 in math.PR

Abstract: We consider a one-dimensional random walk among biased i.i.d. conductances, in the case where the random walk is transient but sub-ballistic: this occurs when the conductances have a heavy-tail at $+\infty$ or at $0$. We prove that the scaling limit of the process is the inverse of an $\alpha$-stable subordinator, which indicates an aging phenomenon, expressed in terms of the generalized arcsine law. In analogy with the case of an i.i.d. random environment studied in details in [Enriquez, Sabot, Zindy, Bull. Soc. Math. 2009; Enriquez, Sabot, Tournier, Zindy, Ann. Appl. Probab. 2013], some `traps' are responsible for the slowdown of the random walk. However, the phenomenology is somehow different (and richer) here. In particular, three types of traps may occur, depending on the fine properties of the tails of the conductances: (i) a very large conductance (a well in the potential); (ii) a very small conductance (a wall in the potential); (iii) the combination of a large conductance followed shortly after by a small conductance (a well-and-wall in the potential).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.