Papers
Topics
Authors
Recent
2000 character limit reached

Joint Manifold Diffusion for Combining Predictions on Decoupled Observations (1904.05159v1)

Published 10 Apr 2019 in cs.CV

Abstract: We present a new predictor combination algorithm that improves a given task predictor based on potentially relevant reference predictors. Existing approaches are limited in that, to discover the underlying task dependence, they either require known parametric forms of all predictors or access to a single fixed dataset on which all predictors are jointly evaluated. To overcome these limitations, we design a new non-parametric task dependence estimation procedure that automatically aligns evaluations of heterogeneous predictors across disjoint feature sets. Our algorithm is instantiated as a robust manifold diffusion process that jointly refines the estimated predictor alignments and the corresponding task dependence. We apply this algorithm to the relative attributes ranking problem and demonstrate that it not only broadens the application range of predictor combination approaches but also outperforms existing methods even when applied to classical predictor combination settings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.