Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seq2Biseq: Bidirectional Output-wise Recurrent Neural Networks for Sequence Modelling (1904.04733v3)

Published 9 Apr 2019 in cs.CL and cs.LG

Abstract: During the last couple of years, Recurrent Neural Networks (RNN) have reached state-of-the-art performances on most of the sequence modelling problems. In particular, the "sequence to sequence" model and the neural CRF have proved to be very effective in this domain. In this article, we propose a new RNN architecture for sequence labelling, leveraging gated recurrent layers to take arbitrarily long contexts into account, and using two decoders operating forward and backward. We compare several variants of the proposed solution and their performances to the state-of-the-art. Most of our results are better than the state-of-the-art or very close to it and thanks to the use of recent technologies, our architecture can scale on corpora larger than those used in this work.

Citations (10)

Summary

We haven't generated a summary for this paper yet.