Papers
Topics
Authors
Recent
2000 character limit reached

CRAD: Clustering with Robust Autocuts and Depth

Published 8 Apr 2019 in stat.CO and stat.ML | (1904.04020v1)

Abstract: We develop a new density-based clustering algorithm named CRAD which is based on a new neighbor searching function with a robust data depth as the dissimilarity measure. Our experiments prove that the new CRAD is highly competitive at detecting clusters with varying densities, compared with the existing algorithms such as DBSCAN, OPTICS and DBCA. Furthermore, a new effective parameter selection procedure is developed to select the optimal underlying parameter in the real-world clustering, when the ground truth is unknown. Lastly, we suggest a new clustering framework that extends CRAD from spatial data clustering to time series clustering without a-priori knowledge of the true number of clusters. The performance of CRAD is evaluated through extensive experimental studies.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.