Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

T-Duality and Doubling of the Isotropic Rigid Rotator (1904.03727v2)

Published 7 Apr 2019 in hep-th, math-ph, and math.MP

Abstract: After reviewing some of the fundamental aspects of Drinfel'd doubles and Poisson-Lie T-duality, we describe the three-dimensional isotropic rigid rotator on $SL(2,\mathbb{C})$ starting from a non-Abelian deformation of the natural carrier space of its Hamiltonian description on $T*SU(2) \simeq SU(2) \ltimes \mathbb{R}3$. A new model is then introduced on the dual group $SB(2,\mathbb{C})$, within the Drinfel'd double description of $SL(2,\mathbb{C})=SU(2) \bowtie SB(2,\mathbb{C})$. The two models are analyzed from the Poisson-Lie duality point of view, and a doubled generalized action is built with $TSL(2,\mathbb{C})$ as carrier space. The aim is to explore within a simple case the relations between Poisson-Lie symmetry, Doubled Geometry and Generalized Geometry. In fact, all the mentioned structures are discussed, such as a Poisson realization of the $C$-brackets for the generalized bundle $T \oplus T*$ over $SU(2)$ from the Poisson algebra of the generalized model. The two dual models exhibit many features of Poisson-Lie duals and from the generalized action both of them can be respectively recovered by gauging one of its symmetries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.