Pairwise Compatibility for 2-Simple Minded Collections
Abstract: In $\tau$-tilting theory, it is often difficult to determine when a set of bricks forms a 2-simple minded collection. The aim of this paper is to determine when a set of bricks is contained in a 2-simple minded collection for a $\tau$-tilting finite algebra. We begin by extending the definition of mutation from 2-simple minded collections to more general sets of bricks (which we call semibrick pairs). This gives us an algorithm to check if a semibrick pair is contained in a 2-simple minded collection. We then use this algorithm to show that the 2-simple minded collections of a $\tau$-tilting finite gentle algebra (whose quiver contains no loops or 2-cycles) are given by pairwise compatibility conditions if and only if every vertex in the corresponding quiver has degree at most 2. As an application, we show that the classifying space of the $\tau$-cluster morphism category of a $\tau$-tilting finite gentle algebra (whose quiver contains no loops or 2-cycles) is an Eilenberg- MacLane space if every vertex in the corresponding quiver has degree at most 2.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.