Papers
Topics
Authors
Recent
Search
2000 character limit reached

Short Text Classification Improved by Feature Space Extension

Published 2 Apr 2019 in cs.CL and cs.IR | (1904.01313v1)

Abstract: With the explosive development of mobile Internet, short text has been applied extensively. The difference between classifying short text and long documents is that short text is of shortness and sparsity. Thus, it is challenging to deal with short text classification owing to its less semantic information. In this paper, we propose a novel topic-based convolutional neural network (TB-CNN) based on Latent Dirichlet Allocation (LDA) model and convolutional neural network. Comparing to traditional CNN methods, TB-CNN generates topic words with LDA model to reduce the sparseness and combines the embedding vectors of topic words and input words to extend feature space of short text. The validation results on IMDB movie review dataset show the improvement and effectiveness of TB-CNN.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.