Papers
Topics
Authors
Recent
Search
2000 character limit reached

Planning with Expectation Models

Published 2 Apr 2019 in cs.LG, cs.AI, and stat.ML | (1904.01191v4)

Abstract: Distribution and sample models are two popular model choices in model-based reinforcement learning (MBRL). However, learning these models can be intractable, particularly when the state and action spaces are large. Expectation models, on the other hand, are relatively easier to learn due to their compactness and have also been widely used for deterministic environments. For stochastic environments, it is not obvious how expectation models can be used for planning as they only partially characterize a distribution. In this paper, we propose a sound way of using approximate expectation models for MBRL. In particular, we 1) show that planning with an expectation model is equivalent to planning with a distribution model if the state value function is linear in state features, 2) analyze two common parametrization choices for approximating the expectation: linear and non-linear expectation models, 3) propose a sound model-based policy evaluation algorithm and present its convergence results, and 4) empirically demonstrate the effectiveness of the proposed planning algorithm.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.