Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Design Framework for Strongly $χ^2$-Private Data Disclosure (2009.01704v2)

Published 3 Sep 2020 in cs.IT and math.IT

Abstract: In this paper, we study a stochastic disclosure control problem using information-theoretic methods. The useful data to be disclosed depend on private data that should be protected. Thus, we design a privacy mechanism to produce new data which maximizes the disclosed information about the useful data under a strong $\chi2$-privacy criterion. For sufficiently small leakage, the privacy mechanism design problem can be geometrically studied in the space of probability distributions by a local approximation of the mutual information. By using methods from Euclidean information geometry, the original highly challenging optimization problem can be reduced to a problem of finding the principal right-singular vector of a matrix, which characterizes the optimal privacy mechanism. In two extensions we first consider a scenario where an adversary receives a noisy version of the user's message and then we look for a mechanism which finds $U$ based on observing $X$, maximizing the mutual information between $U$ and $Y$ while satisfying the privacy criterion on $U$ and $Z$ under the Markov chain $(Z,Y)-X-U$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.