Existence of Gibbs point processes with stable infinite range interaction (1903.09559v1)
Abstract: We provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption, which means that the energy of any finite configuration is super-linear with respect to the number of points. The second assumption is the so-called intensity regularity, which controls the long range of the interaction via the intensity of the process. This assumption is new and introduced here since it is well adapted to the entropy approach. As a corollary of our main result we improve the existence results by Ruelle for pairwise interactions by relaxing the superstabilty assumption. Note that our setting is not reduced to pairwise interaction and can contain infinite range multi-body counterparts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.