Geometric triangulations and the Teichmüller TQFT volume conjecture for twist knots (1903.09480v5)
Abstract: We construct a new infinite family of ideal triangulations and H-triangulations for the complements of twist knots, using a method originating from Thurston. These triangulations provide a new upper bound for the Matveev complexity of twist knot complements. We then prove that these ideal triangulations are geometric. The proof uses techniques of Futer and the second author, which consist in studying the volume functional on the polyhedron of angle structures. Finally, we use these triangulations to compute explicitly the partition function of the Teichm\"uller TQFT and to prove the associated volume conjecture for all twist knots, using the saddle point method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.