Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Topology Learning in a Network of Cyclostationary Processes (1903.09210v2)

Published 21 Mar 2019 in cs.SY

Abstract: Learning the structure of a network from time series data, in particular cyclostationary data, is of significant interest in many disciplines such as power grids, biology and finance. In this article, an algorithm is presented for reconstruction of the topology of a network of cyclostationary processes. To the best of our knowledge, this is the first work to guarantee exact recovery without any assumptions on the underlying structure. The method is based on a lifting technique by which cyclostationary processes are mapped to vector wide sense stationary processes and further on semi-definite properties of matrix Wiener filters for the said processes.We demonstrate the performance of the proposed algorithm on a Resistor-Capacitor network and present the accuracy of reconstruction for varying sample sizes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.