Extension of Killing vector fields beyond compact Cauchy horizons (1903.09135v2)
Abstract: We prove that any compact Cauchy horizon with constant non-zero surface gravity in a smooth vacuum spacetime is a smooth Killing horizon. The novelty here is that the Killing vector field is shown to exist on both sides of the horizon. This generalises classical results by Moncrief and Isenberg, by dropping the assumption that the metric is analytic. In previous work by R\'acz and the author, the Killing vector field was constructed on the globally hyperbolic side of the horizon. In this paper, we prove a new unique continuation theorem for wave equations through smooth compact lightlike (characteristic) hypersurfaces which allows us to extend the Killing vector field beyond the horizon. The main ingredient in the proof of this theorem is a novel Carleman type estimate. Using a well-known construction, our result applies in particular to smooth stationary asymptotically flat vacuum black hole spacetimes with event horizons with constant non-zero surface gravity. As a special case, we therefore recover Hawking's local rigidity theorem for such black holes, which was recently proven by Alexakis-Ionescu-Klainerman using a different Carleman type estimate.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.