Approximation of Fractional Local Times: Zero Energy and Derivatives
Abstract: We consider empirical processes associated with high-frequency observations of a fractional Brownian motion (fBm) $X$ with Hurst parameter $H\in (0,1)$, and derive conditions under which these processes verify a (possibly uniform) law of large numbers, as well as a second order (possibly uniform) limit theorem. We devote specific emphasis to the zero energy' case, corresponding to a kernel whose integral on the real line equals zero. Our asymptotic results are associated with explicit rates of convergence, and are expressed either in terms of the local time of $X$ or of its \blue{derivatives}: in particular, the full force of our finding applies to therough range' $0< H < 1/3$, on which the previous literature has been mostly silent. The {\color{black}use of the derivatives} of local times for studying the fluctuations of high-frequency observations of a fBm is new, and is the main technological breakthrough of the present paper. Our results are based on the use of Malliavin calculus and Fourier analysis, and extend and complete several findings in the literature, e.g. by Jeganathan (2004, 2006, 2008) and Podolskij and Rosenbaum (2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.