Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TATi-Thermodynamic Analytics ToolkIt: TensorFlow-based software for posterior sampling in machine learning applications (1903.08640v2)

Published 20 Mar 2019 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: With the advent of GPU-assisted hardware and maturing high-efficiency software platforms such as TensorFlow and PyTorch, Bayesian posterior sampling for neural networks becomes plausible. In this article we discuss Bayesian parametrization in machine learning based on Markov Chain Monte Carlo methods, specifically discretized stochastic differential equations such as Langevin dynamics and extended system methods in which an ensemble of walkers is employed to enhance sampling. We provide a glimpse of the potential of the sampling-intensive approach by studying (and visualizing) the loss landscape of a neural network applied to the MNIST data set. Moreover, we investigate how the sampling efficiency itself can be significantly enhanced through an ensemble quasi-Newton preconditioning method. This article accompanies the release of a new TensorFlow software package, the Thermodynamic Analytics ToolkIt, which is used in the computational experiments.

Summary

We haven't generated a summary for this paper yet.