Prospection: Interpretable Plans From Language By Predicting the Future
Abstract: High-level human instructions often correspond to behaviors with multiple implicit steps. In order for robots to be useful in the real world, they must be able to to reason over both motions and intermediate goals implied by human instructions. In this work, we propose a framework for learning representations that convert from a natural-language command to a sequence of intermediate goals for execution on a robot. A key feature of this framework is prospection, training an agent not just to correctly execute the prescribed command, but to predict a horizon of consequences of an action before taking it. We demonstrate the fidelity of plans generated by our framework when interpreting real, crowd-sourced natural language commands for a robot in simulated scenes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.