Papers
Topics
Authors
Recent
2000 character limit reached

Prospection: Interpretable Plans From Language By Predicting the Future

Published 20 Mar 2019 in cs.AI, cs.CL, cs.LG, and cs.RO | (1903.08309v1)

Abstract: High-level human instructions often correspond to behaviors with multiple implicit steps. In order for robots to be useful in the real world, they must be able to to reason over both motions and intermediate goals implied by human instructions. In this work, we propose a framework for learning representations that convert from a natural-language command to a sequence of intermediate goals for execution on a robot. A key feature of this framework is prospection, training an agent not just to correctly execute the prescribed command, but to predict a horizon of consequences of an action before taking it. We demonstrate the fidelity of plans generated by our framework when interpreting real, crowd-sourced natural language commands for a robot in simulated scenes.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.