Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bi-log-concavity: some properties and some remarks towards a multi-dimensional extension (1903.07347v1)

Published 18 Mar 2019 in math.PR, math.ST, and stat.TH

Abstract: Bi-log-concavity of probability measures is a univariate extension of the notion of log-concavity that has been recently proposed in a statistical literature. Among other things, it has the nice property from a modelisation perspective to admit some multimodal distributions, while preserving some nice features of log-concave measures. We compute the isoperimetric constant for a bi-log-concave measure, extending a property available for log-concave measures. This implies that bi-log-concave measures have exponentially decreasing tails. Then we show that the convolution of a bi-log-concave measure with a log-concave one is bi-log-concave. Consequently, infinitely differentiable, positive densities are dense in the set of bi-log-concave densities for $L_p-$norms, $p \in [1;+\infty]$. We also derive a necessary and sufficient condition for the convolution of two bi-log-concave measures to be bi-log-concave. We conclude this note by discussing ways of defining a multi-dimensional extension of the notion of bi-log-concavity. We propose an approach based on a variant of the isoperimetric problem, restricted to half-spaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.