Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Class of Generalized Mixed Variational-Hemivariational Inequalities I: Existence and Uniqueness Results (1903.06566v1)

Published 15 Mar 2019 in math.FA

Abstract: We investigate a generalized Lagrange multiplier system in a Banach space, called a mixed variational-hemivariational inequality (MVHVI, for short), which contains a hemivariational inequality and a variational inequality. First, we employ the Minty technique and a monotonicity argument to establish an equivalence theorem, which provides three different equivalent formulations of the inequality problem. Without compactness for one of operators in the problem, a general existence theorem for (MVHVI) is proved by using the Fan-Knaster-Kuratowski-Mazurkiewicz principle combined with methods of nonsmooth analysis. Furthermore, we demonstrate several crucial properties of the solution set to (MVHVI) which include boundedness, convexity, weak closedness, and continuity. Finally, a uniqueness result with respect to the first component of the solution for the inequality problem is proved by using the Ladyzhenskaya-Babuska-Brezzi (LBB) condition. All results are obtained in a general functional framework in reflexive Banach spaces.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.