Characteristic (Fedosov-)class of a twist constructed by Drinfel'd
Abstract: In a seminal paper Drinfel'd explained how to associate to every classical r-matrix for a Lie algebra $\lie g$ a twisting element based on $\mathcal{U}(\lie g)[[\hbar]]$, or equivalently a left invariant star product of the corresponding symplectic structure $\omega$ on the 1-connected Lie group G of g. In a paper, the authors solve the same problem by means of Fedosov quantization. In this short note we provide a connection between the two constructions by computing the characteristic (Fedosov) class of the twist constructed by Drinfel'd and proving that it is the trivial class given by $ \frac{[\omega]}{\hbar}$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.