Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Learning from Ghost Imaging without Imaging

Published 14 Mar 2019 in eess.IV, cs.LG, and stat.ML | (1903.06009v5)

Abstract: Computational ghost imaging is an imaging technique in which an object is imaged from light collected using a single-pixel detector with no spatial resolution. Recently, ghost cytometry has been proposed for a high-speed cell-classification method that involves ghost imaging and machine learning in flow cytometry. Ghost cytometry skips the reconstruction of cell images from signals and directly used signals for cell-classification because this reconstruction is what creates the bottleneck in the high-speed analysis. In this paper, we provide theoretical analysis for learning from ghost imaging without imaging.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.