Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Learning from Ghost Imaging without Imaging (1903.06009v5)

Published 14 Mar 2019 in eess.IV, cs.LG, and stat.ML

Abstract: Computational ghost imaging is an imaging technique in which an object is imaged from light collected using a single-pixel detector with no spatial resolution. Recently, ghost cytometry has been proposed for a high-speed cell-classification method that involves ghost imaging and machine learning in flow cytometry. Ghost cytometry skips the reconstruction of cell images from signals and directly used signals for cell-classification because this reconstruction is what creates the bottleneck in the high-speed analysis. In this paper, we provide theoretical analysis for learning from ghost imaging without imaging.

Citations (1)

Summary

We haven't generated a summary for this paper yet.