Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On large orientation-reversing finite group-actions on 3-manifolds and equivariant Heegaard decompositions (1903.03351v1)

Published 8 Mar 2019 in math.GT

Abstract: We consider finite group-actions on closed, orientable and nonorientable 3-manifolds; such a finite group-action leaves invariant the two handlebodies of a Heegaard splitting of M of some genus g. The maximal possible order of a finite group-action of an orientable or nonorientable handlebody of genus g > 1 is 24(g-1), and in the present paper we characterize the 3-manifolds M and groups G for which the maximal possible order |G| = 24(g-1) is obtained, for some G-invariant Heegaard splitting of genus g > 1. If M is reducible then it is obtained by doubling an action of maximal possible order 24(g-1) on a handlebody of genus g. If M is irreducible then it is a spherical, Euclidean or hyperbolic manifold obtained as a quotient of one of the three geometries by a normal subgroup of finite index of a Coxeter group associated to a Coxeter tetrahedron, or of a twisted version of such a Coxeter group.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.