Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized hydrodynamics, quasiparticle diffusion, and anomalous local relaxation in random integrable spin chains

Published 7 Mar 2019 in cond-mat.dis-nn, cond-mat.stat-mech, and cond-mat.str-el | (1903.03122v1)

Abstract: We study the nonequilibrium dynamics of random spin chains that remain integrable (i.e., solvable via Bethe ansatz): because of correlations in the disorder, these systems escape localization and feature ballistically spreading quasiparticles. We derive a generalized hydrodynamic theory for dynamics in such random integrable systems, including diffusive corrections due to disorder, and use it to study non-equilibrium energy and spin transport. We show that diffusive corrections to the ballistic propagation of quasiparticles can arise even in noninteracting settings, in sharp contrast with clean integrable systems. This implies that operator fronts broaden diffusively in random integrable systems. By tuning parameters in the disorder distribution, one can drive this model through an unusual phase transition, between a phase where all wavefunctions are delocalized and a phase in which low-energy wavefunctions are quasi-localized (in a sense we specify). Both phases have ballistic transport; however, in the quasi-localized phase, local autocorrelation functions decay with an anomalous power law, and the density of states diverges at low energy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.