Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Entanglement types for two-qubit states with real amplitudes (1903.01940v2)

Published 5 Mar 2019 in quant-ph

Abstract: We study the set of two-qubit pure states with real amplitudes and their geometrical representation in the three-dimensional sphere. In this representation, we show that the maximally entangled states --those locally equivalent to the Bell States --form two disjoint circles perpendicular to each other. We also show that taking the natural Riemannian metric on the sphere, the set of states connected by local gates are equidistant to this pair of circles. Moreover, the unentangled, or so-called product states, are $\pi/4$ units away to the maximally entangled states. This is, the unentangled states are the farthest away to the maximally entangled states. In this way, if we define two states to be equivalent if they are connected by local gates, we have that there are as many equivalent classes as points in the interval $[0,\pi/4]$ with the point $0$ corresponding to the maximally entangled states. The point $\pi/4$ corresponds to the unentangled states which geometrically are described by a torus. Finally, for every $0< d < \pi/4$ the point $d$ corresponds to a disjoint pair of torus. We also show that if a state is $d$ units away from the maximally entangled states, then its entanglement entropy is $S(d) = 1- \log_2 \sqrt{\frac{(1+\sin 2 d){1+\sin 2 d}}{(1-\sin 2 d){-1+\sin 2 d}}}$. Finally, we also show how this geometrical interpretation allows us to clearly see that any pair of two-qubit states with real amplitudes can be connected with a circuit that only has single-qubit gates and one controlled-Z gate.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.