Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Task Transfer (1903.01092v1)

Published 4 Mar 2019 in cs.CV

Abstract: In this work, we present a novel meta-learning algorithm, i.e. TTNet, that regresses model parameters for novel tasks for which no ground truth is available (zero-shot tasks). In order to adapt to novel zero-shot tasks, our meta-learner learns from the model parameters of known tasks (with ground truth) and the correlation of known tasks to zero-shot tasks. Such intuition finds its foothold in cognitive science, where a subject (human baby) can adapt to a novel-concept (depth understanding) by correlating it with old concepts (hand movement or self-motion), without receiving explicit supervision. We evaluated our model on the Taskonomy dataset, with four tasks as zero-shot: surface-normal, room layout, depth, and camera pose estimation. These tasks were chosen based on the data acquisition complexity and the complexity associated with the learning process using a deep network. Our proposed methodology out-performs state-of-the-art models (which use ground truth)on each of our zero-shot tasks, showing promise on zero-shot task transfer. We also conducted extensive experiments to study the various choices of our methodology, as well as showed how the proposed method can also be used in transfer learning. To the best of our knowledge, this is the firstsuch effort on zero-shot learning in the task space.

Citations (51)

Summary

We haven't generated a summary for this paper yet.