Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reachability Method for Verifying Dynamical Systems with Deep Neural Network Controllers (1903.00520v3)

Published 1 Mar 2019 in cs.SY

Abstract: Deep neural networks can be trained to be efficient and effective controllers for dynamical systems; however, the mechanics of deep neural networks are complex and difficult to guarantee. This work presents a general approach for providing guarantees for deep neural network controllers over multiple time steps using a combination of reachability methods and open source neural network verification tools. By bounding the system dynamics and neural network outputs, the set of reachable states can be over-approximated to provide a guarantee that the system will never reach states outside the set. The method is demonstrated on the mountain car problem as well as an aircraft collision avoidance problem. Results show that this approach can provide neural network guarantees given a bounded dynamic model.

Citations (28)

Summary

We haven't generated a summary for this paper yet.