Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors

Published 28 Feb 2019 in cs.LG and stat.ML | (1902.11019v1)

Abstract: Most previous works usually explained adversarial examples from several specific perspectives, lacking relatively integral comprehension about this problem. In this paper, we present a systematic study on adversarial examples from three aspects: the amount of training data, task-dependent and model-specific factors. Particularly, we show that adversarial generalization (i.e. test accuracy on adversarial examples) for standard training requires more data than standard generalization (i.e. test accuracy on clean examples); and uncover the global relationship between generalization and robustness with respect to the data size especially when data is augmented by generative models. This reveals the trade-off correlation between standard generalization and robustness in limited training data regime and their consistency when data size is large enough. Furthermore, we explore how different task-dependent and model-specific factors influence the vulnerability of deep neural networks by extensive empirical analysis. Relevant recommendations on defense against adversarial attacks are provided as well. Our results outline a potential path towards the luminous and systematic understanding of adversarial examples.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.