Papers
Topics
Authors
Recent
Search
2000 character limit reached

Critical dynamics of the Kuramoto model on sparse random networks

Published 27 Feb 2019 in cond-mat.stat-mech and cond-mat.dis-nn | (1902.10422v1)

Abstract: We consider the Kuramoto model on sparse random networks such as the Erd\H{o}s-R\'enyi graph or its combination with a regular two-dimensional lattice and study the dynamical scaling behavior of the model at the synchronization transition by large-scale, massively parallel numerical integration. By this method, we obtain an estimate of critical coupling strength more accurate than obtained earlier by finite-size scaling of the stationary order parameter. Our results confirm the compatibility of the correlation-size and the temporal correlation-length exponent with the mean-field universality class. However, the scaling of the order parameter exhibits corrections much stronger than those of the Kuramoto model with all-to-all coupling, making thereby an accurate estimate of the order-parameter exponent hard. We find furthermore that, as a qualitative difference to the model with all-to-all coupling, the effective critical exponents involving the order-parameter exponent, such as the effective decay exponent characterizing the critical desynchronization dynamics show a non-monotonic approach toward the asymptotic value. In the light of these results, the technique of finite-size scaling of limited size data for the Kuramoto model on sparse graphs has to be treated cautiously.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.