Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anomalous Situation Detection in Complex Scenes

Published 26 Feb 2019 in cs.CV | (1902.10016v1)

Abstract: In this paper we investigate a robust method to identify anomalies in complex scenes. This task is performed by evaluating the collective behavior by extracting the local binary patterns (LBP) and Laplacian of Gaussian (LoG) features. We fuse both features together which are exploited to train an MLP neural network during the training stage, and the anomaly is identified on the test samples. Considering the challenge of tracking individuals in dense crowded scenes due to multiple occlusions and clutter, in this paper we extract LBP and LoG features and use them as an approximate representation of the anomalous situation. These features well match the appearance of anomaly and their consistency, and accuracy is higher both in regular and irregular areas compared to other descriptors. In this paper, these features are exploited as input prior to train the neural network. The MLP neural network is subsequently explored to consider these features that can detect the anomalous situation. The experimental tests are conducted on a set of benchmark video sequences commonly used for anomaly situation detection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.