Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Approximate Dynamic Programming with Neural Networks in Linear Discrete Action Spaces (1902.09855v1)

Published 26 Feb 2019 in cs.LG and stat.ML

Abstract: Real-world problems of operations research are typically high-dimensional and combinatorial. Linear programs are generally used to formulate and efficiently solve these large decision problems. However, in multi-period decision problems, we must often compute expected downstream values corresponding to current decisions. When applying stochastic methods to approximate these values, linear programs become restrictive for designing value function approximations (VFAs). In particular, the manual design of a polynomial VFA is challenging. This paper presents an integrated approach for complex optimization problems, focusing on applications in the domain of operations research. It develops a hybrid solution method that combines linear programming and neural networks as part of approximate dynamic programming. Our proposed solution method embeds neural network VFAs into linear decision problems, combining the nonlinear expressive power of neural networks with the efficiency of solving linear programs. As a proof of concept, we perform numerical experiments on a transportation problem. The neural network VFAs consistently outperform polynomial VFAs, with limited design and tuning effort.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.