Papers
Topics
Authors
Recent
2000 character limit reached

Logarithmic Regret for parameter-free Online Logistic Regression

Published 26 Feb 2019 in cs.LG, math.ST, and stat.TH | (1902.09803v1)

Abstract: We consider online optimization procedures in the context of logistic regression, focusing on the Extended Kalman Filter (EKF). We introduce a second-order algorithm close to the EKF, named Semi-Online Step (SOS), for which we prove a O(log(n)) regret in the adversarial setting, paving the way to similar results for the EKF. This regret bound on SOS is the first for such parameter-free algorithm in the adversarial logistic regression. We prove for the EKF in constant dynamics a O(log(n)) regret in expectation and in the well-specified logistic regression model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.