Papers
Topics
Authors
Recent
Search
2000 character limit reached

BoostGAN for Occlusive Profile Face Frontalization and Recognition

Published 26 Feb 2019 in cs.CV | (1902.09782v1)

Abstract: There are many facts affecting human face recognition, such as pose, occlusion, illumination, age, etc. First and foremost are large pose and occlusion problems, which can even result in more than 10% performance degradation. Pose-invariant feature representation and face frontalization with generative adversarial networks (GAN) have been widely used to solve the pose problem. However, the synthesis and recognition of occlusive but profile faces is still an uninvestigated problem. To address this issue, in this paper, we aim to contribute an effective solution on how to recognize occlusive but profile faces, even with facial keypoint region (e.g. eyes, nose, etc.) corrupted. Specifically, we propose a boosting Generative Adversarial Network (BoostGAN) for de-occlusion, frontalization, and recognition of faces. Upon the assumption that facial occlusion is partial and incomplete, multiple patch occluded images are fed as inputs for knowledge boosting, such as identity and texture information. A new aggregation structure composed of a deep GAN for coarse face synthesis and a shallow boosting net for fine face generation is further designed. Exhaustive experiments demonstrate that the proposed approach not only presents clear perceptual photo-realistic results but also shows state-of-the-art recognition performance for occlusive but profile faces.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.