Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global bifurcation and stability of steady states for a bacterial colony model with density-suppressed motility

Published 26 Feb 2019 in math.AP | (1902.09751v2)

Abstract: We investigate the structure and stability of the steady states for a bacterial colony model with density-suppressed motility. We treat the growth rate of bacteria as a bifurcation parameter to explore the local and global structure of the steady states. Relying on asymptotic analysis and the theory of Fredholm solvability, we derive the second-order approximate expression of the steady states. We analytically establish the stability criterion of the bifurcation solutions, and show that sufficiently large growth rate of bacteria leads to a stable uniform steady state. While the growth rate of bacteria is less than some certain value, there is pattern formation with the admissible wave mode. All the analytical results are corroborated by numerical simulations from different stages.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.